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Abstract—Traditional clustering and feature selection methods consider the data matrix as static. However, the data matrices evolve

smoothly over time in many applications. A simple approach to learn from these time-evolving data matrices is to analyze them

separately. Such strategy ignores the time-dependent nature of the underlying data. In this paper, we propose two formulations for

evolutionary co-clustering and feature selection based on the fused Lasso regularization. The evolutionary co-clustering formulation

is able to identify smoothly varying hidden block structures embedded into the matrices along the temporal dimension. Our formulation

is very flexible and allows for imposing smoothness constraints over only one dimension of the data matrices. The evolutionary feature

selection formulation can uncover shared features in clustering from time-evolving data matrices. We show that the optimization

problems involved are non-convex, non-smooth and non-separable. To compute the solutions efficiently, we develop a two-step

procedure that optimizes the objective function iteratively. We evaluate the proposed formulations using the Allen Developing Mouse

Brain Atlas data. Results show that our formulations consistently outperform prior methods.

Index Terms—Sparsity learning, time-varying data, co-clustering, feature selection, optimization, bioinformatics, neuroinformatics
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1 INTRODUCTION

CO-CLUSTERING aims at identifying block structures of
the data matrices by clustering the rows and columns

simultaneously into co-clusters [9], [13], [14], [18], [36]. That
is, the hidden structure of the data matrix can be more accu-
rately described by a “checkerboard” structure in which a
subset of the rows and a subset of the columns form a block.
Currently, co-clustering finds applications in many areas,
including biological data analysis [23], [29], text mining
[13], [14], and social studies [17].

As a class of powerful methods for unsupervised pattern
mining, existing co-clustering methods invariably assume
that the data matrices are static; that is, they do not evolve
over time. However, in many real-world domains, the pro-
cesses that generated the data are time-evolving. Hence, the
observed data are usually dynamic. As a consequence,
the block structures embedded into the time-varying data
should also evolve smoothly over time. Therefore, it is
desirable to incorporate the temporal smoothness constraint
into the co-clustering formalism. Similarly, current methods
for feature selection in clustering assume that the data are
static [47], [50]. Nevertheless, many practical problems are
time-evolving, and it is desirable to select features by incor-
porating the temporal smooth nature of the data.

In this paper, we propose an evolutionary co-clustering
formulation for identifying co-clusters from time-varying
data. The proposed formulation employs sparsity-inducing
regularization [38] to identify block structures from the
time-varying data matrices. More specifically, it applies
fused Lasso type of regularization [39] to encourage tempo-
ral smoothness over the block structures identified from
contiguous time points. The proposed formulation is very
flexible and can be applied to encourage temporal smooth-
ness over either one or both dimensions of the data matri-
ces. We also study the problem of feature selection in
clustering on time-varying data. By incorporating the fused
Lasso regularization [39] into the framework of sparse fea-
ture selection, an evolutionary feature selection formulation
is proposed for identifying clusters and shared features in
time-varying data simultaneously.

We show that the two proposed formulations for evolu-
tionary co-clustering and feature selection can be reduced
to the same optimization problem, which is non-convex,
non-smooth, and non-separable. We propose an iterative
two-step procedure to compute the solution of the general
optimization problem. Each of the iterative step involves a
convex, but non-smooth and non-separable problem. To
enable efficient optimization, we derive the dual form of
this problem and employ a gradient descent algorithm to
solve the smooth dual problem.

We evaluate the proposed formulations using the Allen
Developing Mouse Brain Atlas data [21], [25], which contain
high-resolution, three-dimensional gene expression patterns
in the mouse brain at multiple developmental stages.
Results show that the proposed evolutionary co-clustering
formulation consistently outperforms other methods by
identifying blocks that are consistent with classical neuro-
anatomy. Meanwhile, the feature selection formulation
yields a set of shared features across time points.
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The rest of this paper is organized as follows. We intro-
duce the sparse singular value decomposition method for
co-clustering, and then describe the proposed evolutionary
co-clustering formulation in Section 2. In Section 3, we pres-
ent the proposed evolutionary feature selection formulation.
We discuss some related work in Section 4 and report the
experimental results in Section 5. This paper concludes in
Section 6 with discussions and future work.

Notations. We use boldface lower-case letters, e.g., u, to
denote vectors and upper-case letters, e.g., X, to denote
matrices. The norm jj � jj stands for ‘2 norm unless stated
otherwise explicitly. For a vector u, its ‘1 norm, defined as
the summation of the absolute values of its components, is
denoted as jjujj1. For a matrix X, its Frobenius norm is
denoted as jjXjjF . We use � to denote the component-wise
multiplication and � to denote the Kronecker product. The
soft-thresholding operator T �, acting on a vector u, is
defined component-wise as:

T �ðuÞð Þi¼
ui � � if ui > �;
ui þ � if ui < ��;
0 if juij � �:

8<
: (1)

2 A FUSED LASSO FORMULATION FOR

EVOLUTIONARY CO-CLUSTERING

In this section, we describe the sparse singular value decom-
position method for co-clustering. We then propose a fused
Lasso formulation for evolutionary co-clustering.

2.1 Sparse Singular Value Decomposition
for Co-Clustering

The problem of co-clustering is closely related to the sin-
gular value decomposition (SVD) of the data matrices
[13], [24], [49]. In [13] and [49], the spectral clustering for-
malism is extended to derive a spectral formulation for
co-clustering. In these spectral co-clustering formulations,
the data are projected onto the left and the right singular
vector spaces before they are concatenated and clustered
to identify the co-clusters. Motivated by the relationship
between SVD and co-clustering, a sparse SVD formula-
tion is proposed in [24] for co-clustering. Formally, let
X 2 Rn�p be a data matrix. The first singular value and
the corresponding left and right singular vectors of X can
be computed as

min
s;p;q

kX� spqTk2F ;

where s 2 R is the first singular value, and p 2 Rn and
q 2 Rp are the corresponding left and right singular vectors,
respectively, and k � kF denotes the matrix Frobenius norm.

It is well known that the matrix spqT is the optimal rank
one approximation to the matrix X [15]. Note that p and q
lie in the row space and column space, respectively, of X. In
addition, the singular vectors p and q are usually not
sparse; that is, most of their components are nonzero.

Motivated by the optimal rank one approximation prop-
erty of SVD, a sparse SVD formulation is proposed in [24].
Furthermore, it is shown that this sparse SVD formulation
can be employed for solving co-clustering problems.

Specifically, the following sparsity-inducing formulation is
involved in sparse SVD:

min
s;p;q

1

2
kX� spqTk2F þ �kspk1 þ gksqk1; (2)

where k � k denotes the vector ‘1-norm, and � and g are the
regularization parameters. It is well known that the ‘1-norm
regularization on p and q encourages sparse solutions [38].
Thus, when � and g are set to large values, many entries of
p and q will be set of zero. The regularization parameters �
and g control the tradeoff between the quality of the rank
one approximation and the sparsity of p and q, respectively.

It is shown in [24] that the sparse SVD formulation can be
readily employed to solve co-clustering problems. Specifi-
cally, the rows and columns of X corresponding to nonzero
entries of p and q, respectively, can be naturally interpreted
to form a co-cluster. If multiple co-clusters are desired, sub-
sequent co-clusters can be identified by removing the rank
one approximation from the data matrix and solving the
optimization problem in Eq. (2) using the residual matrix. It
is shown that this sparse SVD method outperforms prior
co-clustering methods by identifying distinctive gene
expression profiles corresponding to various pathological
conditions from a microarray gene expression dataset.

The optimization problem in Eq. (2) is non-convex and
non-smooth. An iterative procedure has been developed in
[24] to compute the solution. In this procedure, one of the
vector variables is fixed while the other one is optimized,
and this process is alternated between the two vector varia-
bles until it converges to a locally optimal solution. Specifi-
cally, when p is fixed, q can be computed by solving

min
~q

F ð~qÞ 	 1

2
kX� p~qTk2F þ gk~qk1; (3)

where ~q ¼ sq. After ~q is obtained, we have s ¼ k~qk and
q ¼ ~q=s. Similarly, when q is fixed, the following problem
is involved:

min
~p

Gð~pÞ 	 1

2
kX� ~pqTk2F þ �k~pk1; (4)

and p ¼ ~p=s where s ¼ k~pk. It can be shown that the prob-
lems in Eqs. (3) and (4) are convex and can be solved
analytically.

The objective function in Eq. (3) can be written as

F ð~qÞ ¼ 1

2
kX� p~qTk2F þ gk~qk1

¼ 1

2
TrðXTXÞ � pTX~qþ 1

2
~qT ~qþ gk~qk1:

(5)

Taking the subdifferential of Eq. (5) with respect to ~q, we
have

@F ð~qÞ ¼ �XTpþ ~qþ g SGNð~qÞ;

where SGNð�Þ is defined component-wise as

SGNð~qÞð Þi¼
f1g if ð~qÞi > 0
f�1g if ð~qÞi < 0
½�1; 1
 if ð~qÞi ¼ 0:

8<
:
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Note that the subdifferential of a function is a set, and
when the function is differentiable, the set is a singleton
containing the derivative [34]. It follows from the optimality
condition for unconstrained problems [34] that ~q� is an opti-
mal solution to Eq. (3) if and only if 0 2 @F ð~q�Þ. Hence, it
can be easily verified that the optimal ~q� is given by

ð~q�Þi ¼
ðXTp� gÞi if ðXTpÞi > g

ðXTpþ gÞi if ðXTpÞi < �g

0 if jðXTpÞij � g:

8<
: (6)

Similarly, the optimal ~p� for the optimization problem in
Eq. (4) is given by

ð~p�Þi ¼
ðXq� �Þi if ðXqÞi > �
ðXqþ �Þi if ðXqÞi < ��
0 if jðXqÞij � �:

8<
: (7)

The iterative procedure in [24] applies Eqs. (6) and (7) alter-
nately until a locally optimal solution is reached.

2.2 Evolutionary Co-Clustering

In the traditional co-clustering framework [9], [13], [18],
[23], [29], [36], we assume that the data matrix is time-
invariant; that is, it does not evolve along the temporal
dimension. In many application domains, each data matrix
is usually associated with a particular time point, and it
evolves smoothly over time. For example, in the developing
mouse brain gene expression analysis, the spatial gene
expression patterns at a particular developing time point is
captured by a data matrix in which one dimension corre-
sponds to the genes and the other dimension corresponds
to the spatial locations. Since gene regulation acts sequen-
tially, the expression patterns usually evolves smoothly
over time, thereby resulting a series of time-stamped data
matrices, one for each sampled developing time point. A
simple approach for mining these time-evolving data matri-
ces is to treat the data matrices at different time points sepa-
rately. This approach, however, ignores the time-dependent
nature of the underlying process, thereby yielding results
that are not amenable to domain interpretation. In this
paper, we propose an evolutionary co-clustering formula-
tion for uncovering patterns from time-evolving data matri-
ces. The proposed formulation encourages smooth changes
in the row and/or column patterns over time, thereby cap-
turing the time-evolving nature of the underlying process
faithfully. The proposed framework is very flexible and can
be applied to applications in which only one dimension of
the data matrices evolves.

Given a set of time-evolving data matrices Xt 2 Rn�p for
t ¼ 1; . . . ; N , whereN is the number of sampled time points,
we are interested in identifying block structures from each
of the data matrices. A simple approach is to compute the
sparse SVD for each data matrix separately, leading to the
following optimization problem:

min
st;ut;vt

XN
t¼1

1

2

��Xt � stutv
T
t

��2
F
þ �kstutk1 þ gkstvtk1

� �
;

where ut 2 Rn and vt 2 Rp are associated with the rows and
columns, respectively, of Xt, and st is the corresponding
singular value. However, this approach decouples the data

matrices for contiguous time points and ignores the tempo-
ral evolving nature of the underlying process that generated
the data matrices.

To incorporate the temporal smoothness constraints into
the co-clustering framework, we propose the following
sparsity-inducing evolutionary co-clustering formulation:

min
st;ut;vt

XN
t¼1

1

2

��Xt � stutv
T
t

��2
F
þ �kstutk1 þ gkstvtk1

� �

þ
XN�1

t¼1

hkstþ1utþ1 � stutk1 þ �kstþ1vtþ1 � stvtk1
� �

;

(8)

where h and � and tunable parameters. In this formulation,
the last two regularization terms are fused Lasso type of
regularization [40], and they encourage the ut and vt for
contiguous time points to be similar. Specifically, these reg-
ularization terms encourage the differences of contiguous
ut and vt to be zero, thus enforcing many entries of contigu-
ous ut and vt to be identical. These fused Lasso type of regu-
larization naturally incorporates the time-evolving nature of
the data matrices by encouraging the block structures for
contiguous time points to be similar. Note that we can also
encourage only the rows or the columns of the block struc-
tures to be similar by setting either � or h to zero.

The objective function in Eq. (8) can be expressed equiva-
lently as

XN
t¼1

1

2
kXt � stutv

T
t k

2
F þ �k~uk1 þ gk~vk1 þ hkE~uk1 þ �kF~vk1;

where ~u ¼ ðs� enÞ � u, s ¼ ½s1; s2; . . . ; sN 
T , ~v ¼ ðs� epÞ�
v;u ¼ ½uT

1 ;u
T
2 ; . . . ; uT

N 

T 2 RnN; v ¼ ½vT

1 ;v
T
2 ; . . . ; vT

N 

T 2

RpN; E 2 RnðN�1Þ�nN and F 2 RpðN�1Þ�pN are defined as

ðEÞij ¼
�1 if j ¼ i; i ¼ 1; . . . ; nðN � 1Þ
1 j ¼ iþ n; i ¼ 1; . . . ; nðN � 1Þ
0 otherwise;

8<
:

ðFÞij ¼
�1 if j ¼ i; i ¼ 1; . . . ; pðN � 1Þ
1 j ¼ iþ p; i ¼ 1; . . . ; pðN � 1Þ
0 otherwise:

8<
: (9)

The objective function in Eq. (8) is non-convex and non-
smooth. In addition, the fused Lasso regularization terms
are non-separable [16], [43]. We propose an iterative proce-
dure to compute u and v. Specifically, we optimize u by fix-
ing v and then optimize v by fixing u. This iterative process
is repeated until convergence. In the following, we discuss
the detailed procedure of computing v when u are fixed.
The other case can be derived in a similar way. Specifically,
when u are fixed, ~v can be computed by solving the follow-
ing optimization problem:

min
~v

fg� ð~vÞ 	
Xt

i¼1

1

2
kAi � ui~v

T
i k

2
F þ gk~vk1 þ �kF~vk1: (10)

The objective function in Eq. (10) is convex, but non-smooth
and non-separable. In Section 4, we develop an efficient
algorithm to compute the optimal ~v�.
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3 EVOLUTIONARY FEATURE SELECTION

IN CLUSTERING

In this section, we describe the problem of feature selection
in clustering. We then propose an evolutionary feature
selection formulation for clustering time-varying data.

3.1 Feature Selection in Clustering

Given a data matrix X 2 Rn�p containing n samples and p
features, we want to group the rows ofX into clusters. If we
useXj to denote the j-th column (feature) ofX, the objective
functions of many clustering methods can be expressed in
terms of the columns ofX as follows [47]:

min
Q

Xp
j¼1

fjðXj;QÞ;

where fj is a function only related to the feature Xj, and Q
represents a partition of the dataset. For instance, if we con-
sider theK-means clustering method, fj will be the summa-
tion of within-cluster distances for featureXj as

fjðXj;QÞ ¼ c�
XK
k¼1

1

nk

X
i;i02Ck

di;i0;j;

where Q ¼ fC1; � � � ; CKg is a partition of the samples in K
clusters, c is a constant related to the data, nk denotes the
number of samples in cluster Ck, di;i0;j is the dissimilarity

between the ith and the i0th samples with respect to the jth
feature.

When the squared Euclidean distance di;i0;j ¼ jXi;j�
Xi0;jj2 is used, a sparse clustering method was proposed in

[47]. Instead of treating features equally, the sparse cluster-
ing method gives each feature a weight. This leads to the
following optimization problem:

min
w;Q

Xp
j¼1

wjfjðXj;QÞ;

where w ¼ ðw1; . . . ; wpÞT denotes the weight vector for the
features. In this formulation, the different contributions of
features to the overall objective function are reflected in the
weight vector. Furthermore, if additional constraints on the
weight vector are imposed, the weight vector can be encour-
aged to be sparse (i.e., containing zero elements) [38],
thereby leading to feature selection [47]. Specifically, the fol-
lowing optimization problem is involved in the sparse clus-
tering method in [47]:

min
w;Q

Xp
j¼1

wjfjðXj;QÞ s:t: jjwjj2 � 1; jjwjj1 � s; wj � 0;

where s is a tuning parameter.
In [47] a two-step procedure is used to solve this optimi-

zation problem. In the first step, the weight vector w is
fixed, and the optimization reduces to a weighted K-means
problem. In the second step, a vector a is formed, where
each element aj ¼ fjðXj;QÞ is the within-cluster distance
for the jth feature based on the clustering results obtained
from the first step. This gives rise to the following optimiza-
tion problem:

min
w

�wTa s:t:jjwjj2 � 1; jjwjj1 � s; wj � 0:

This problem is of Lasso type and the solution can be com-
puted by applying the soft thresholding operator in Eq. (1) as

w ¼ T �ðaÞ
jjT �ðaÞjj

;

for some � determined by s. The weight vector w is
updated and this loop will be iterated until the change of
w is very small.

It is intuitively easy to understand that some features
will be given zero weight after a few iterations, and thus
they will not affect the clustering results. Specifically, if
there are only minor differences among samples for the
jth feature, aj obtained from the first step will be close to
zero. According to the shrinkage effect of the soft thresh-
olding operator, the corresponding weight wj will be
updated to a smaller value. In the next iteration, since the
standard K-means will be applied on data scaled by w,
the contributions of this feature will diminish gradually.
Therefore, features that are invariant among samples will
be eliminated eventually.

3.2 Evolutionary Feature Selection in Clustering

In the above feature selection framework, the data matrix is
considered static and does not evolve over time. In many
application domains, the data matrices evolve over time,
and thus the data matrices at different time points are corre-
lated with each other. Each of them captures a snapshot of
an evolving process that generated the data. A simple
approach for mining these time-evolving data matrices is to
analyze them at different time points separately. In this
way, however, the time-dependent nature of the underlying
process is ignored and the results are not amenable to
domain interpretation.

In this section, we propose an evolutionary feature selec-
tion formulation for uncovering shared features from time-
evolving data matrices. The proposed formulation encour-
ages smooth changes of the features over time, thereby cap-
turing the time-evolving nature of the underlying process
faithfully. Formally, given a sequence of data matrices Xt,
t ¼ 1; . . . ; N , where N is the number of time points. A sim-
ple idea is to apply sparse K-means separately to each data
matrix, leading to the following optimization problem:

min
~w; ~Q

XN
t¼1

Xp
j¼1

ðwtÞjfjððXtÞj;QtÞ

jjwtjj2 � 1; jjwtjj1 � st; t ¼ 1; . . . ; N;

where ~w ¼ ðwT
1 ; . . . ;w

T
NÞ

T 2 RNp, wt 2 Rp is weight vector

corresponding to the data matrix Xt 2 Rn�p, ~Q ¼ fQ1; . . . ;
QNg, and fs1; . . . ; sNg are the tuning parameters controlling
the feature selection at different time points.

In order to encourage the selection of shared features
among time-varying data matrices, we introduce a fused
Lasso term on the successive differences of the weight vec-
tors. This leads to the following optimization problem:
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min
~w; ~Q

XN
t¼1

Xp
j¼1

ðwtÞjfjððXtÞj;QtÞ

jjwtjj2 � 1; jjwtjj1 � st; t ¼ 1; . . . ; N;

jjwt �wt�1jj1 � s0; t ¼ 2; . . . ; N;

(11)

where s0 is a tuning parameter to encourage weight vectors
at contiguous time points to be similar. Specifically, with the
fused Lasso regularization, wt �wt�1 will be enforced to be
close to zero if the tuning parameter s0 is small enough. In
this case, wt and wt�1 will be almost the same, thereby lead-
ing to the selection of shared features across time points.

Following [47], we develop a two-step procedure for
solving the optimization problem in Eq. (11). In the first
step, the weight vector ~w is fixed, and we optimize the clus-

tering ~Q. This leads to a set of decoupled clustering prob-
lems in which each feature is associated with a weight. The
can be solved by applying commonly used algorithms such
as K-means to scaled data matrices using ~w as the weights.

In the second step, the clustering results ~Q from the first
step are fixed, and the optimization problem in Eq. (11) is
reduced to a fused Lasso type problem as

min
~w

� ~wT ~a

jjwtjj2 � 1; jjwtjj1 � st; t ¼ 1; . . . ; N;

jjwt �wt�1jj1 � s0; t ¼ 2; . . . ; N;

(12)

where ~a ¼ ðaT1 ; � � � ; aTNÞ
T , at 2 Rp is the within-cluster

dissimilarity vector, and its element is defined as ðatÞj ¼
fjððXtÞj;QtÞ.

We can transform the problem in Eq. (12) to an equiva-
lent unconstrained optimization problem:

min
~w

ajj ~wjj2 � ~wT ~aþ
XN
t¼1

�tjj ~wtjj1 þ �0jjF ~wjj1; (13)

where F is defined in Eq. (9), the coefficient of the ‘2-norm
term a depends on the data and needs to be determined.
Although there is no closed form solution for a, we can
devise an approximation scheme to estimate its value. To
this end, we propose to solve an unconstraint optimization
problem first as

min
~w

ajj ~wjj2 � ~wT ~a: (14)

The solution to the problem in Eq. (14) can be expressed as

~w$ ¼ ~a
2a . Then we set jj ~w$ jj ¼ 1, and obtain a

$ ¼ jj~ajj
2 .

Finally, we substitute this a
$
into Eq. (13) and get the fol-

lowing problem:

min
~w

1

2
jj ~w� ~ujj2 þ

XN
t¼1

�tjjwtjj1 þ �0jjF ~wjj1; (15)

where ~u ¼ ~a
jj~ajj. The formulation in Eq. (15) is similar to the

problem that we need to solve in the second step of the evo-
lutionary co-clustering procedure. In Eq. (15), we still use

the notations �t and �0 instead of their exact forms, 2�t
jj~ajj and

2�0
jj~ajj to simplify the notation, since the parameters �t and �0

can be scaled to make these two forms equivalent. Note that

the parameters �t can be different for the sequences of data-
sets. For simplicity, we set them to the same value in our
experiments.

4 AN EFFICIENT ALGORITHM

The evolutionary co-clustering is for identifying the hidden
block structures in the data matrices along the temporal
dimension. Meanwhile, the evolutionary feature selection
method is designed to uncover the shared features from
time-evolving data matrices. We show that both problems
can be formulated as solving fused Lasso regularized objec-
tive functions. Specifically, a common optimization problem
that needs to be solved in the evolutionary co-clustering and
feature selection formulations in Sections 2 and 3 has the fol-
lowing form:

min
~w

f
�1
�2

	 Lð ~wÞ þ �1jj ~wjj1 þ �2jjF ~wjj1; (16)

where Lð ~wÞ is a convex smooth loss function. In particu-

lar, Lð ~wÞ is
PN

t¼1
1
2 kXt � ut ~w

T
t k

2
F for the evolutionary co-

clustering model and 1
2 jj ~w� ~ujj2 for the evolutionary fea-

ture selection formulation. This optimization problem is
similar to the fused Lasso signal approximator [27], [28],
and we develop an efficient procedure for solving it in
the following.

4.1 A Two-Step Algorithm

A central challenge for solving the optimization problem in
Eq. (16) is to deal with the ‘1-norm and the fused Lasso reg-
ularization term, which is non-smooth and non-separable.
A key property that leads to an efficient algorithm to this
problem is that the ‘1-norm term and the fused Lasso term
can be solved sequentially in two steps, giving rise to a two-
step procedure. This result is originally given in [16] and
[28] and is summarized in the following theorem:

Theorem 4.1. Define

p
�1
�2

¼ argmin
~w

f
�1
�2
ð ~wÞ: (17)

Then for any �1; �2 � 0, we have

p
�1
�2

¼ T �1

�
p0
�2

�
: (18)

The proof of this theorem is similar to that of Theorem 3
in [28] and is thus omitted.

Theorem 4.1 shows that we can solve the optimization
problem in two sequential steps. Specifically, we can first
solve the problem in Eq. (16) with �1 ¼ 0 to obtain the

intermediate solution p0
�2
. Then the final optimal solution

p
�1
�2

can be obtained by applying the soft thresholding

operator to the intermediate solution as in Eq. (18). We
now discuss how the �1 ¼ 0 case can be solved efficiently
in its dual form.

4.2 A Dual Formulation

A key to the two-step procedure mentioned above is to
solve the optimization problem rewritten in its full form as
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min
~w

f�2ð ~wÞ 	 LðwÞ þ �2kF ~wk1: (19)

We propose to solve this problem in its dual form. Since the
‘1 norm is non-differentiable, we obtain the following
equivalent min-max problem:

min
~w

max
k~zk1��2

fð ~w; ~zÞ 	 Lð~zÞ þ F ~w; ~zh i: (20)

The existence of saddle point to this min-max problem is
guaranteed by the Von Neumann Lemma [33], because
fð�; �Þ is differentiable, convex in ~w, and concave in ~z. After
exchanging the order of min and max and setting the deriv-
ative of fð ~w; ~zÞwith respect to ~w to zero, we obtain an equa-
tion to describe the relationship between the primal and
dual variables as

rLð ~wÞ þ FT~z ¼ 0; (21)

where rLð ~wÞ denotes the gradient of the smooth function
Lð ~wÞ with respect to ~w. By substituting Eq. (21) into
Eq. (20), we obtain a dual optimization problem in terms of
~z. For ease of presentation, we change max to min after the
substitution by negating the objective function.

In the case of evolutionary co-clustering, the form of the
dual problem can be written as

min
k~zk1��2

’ð~zÞ 	 1

2
kFT~zk2 � ~XTu;FT~z

	 

� c; (22)

where

~X ¼

X1 0
X2

. .
.

0 Xt

0
BBB@

1
CCCA 2 RnN�pN;

c ¼ 1
2

PN
t¼1 TrððXt � utu

T
t XtÞðXt � utu

T
t XtÞT Þ. In the case of

evolutionary feature selection, the dual problem can be
written as

min
jj~zjj1��2

’ð~zÞ 	 1

2
jjFT~zjj2 �<F~z; ~u>: (23)

The dual formulations in Eqs. (23) and (22) are convex and
smooth. Hence, they can be solved by gradient decent
algorithms.

4.3 A Gradient Algorithm

The dual problems in Eqs. (22) and (23) are constrained
quadratic programs (QP) and can be solved by general
QP solvers. However, direct application of general QP
solvers would ignore the special structure of this prob-
lem, incurring excessive computational cost. In this
paper, we propose to solve this dual formulation by a
gradient descent algorithm, since the objective function is
differentiable. Note that the Hessian of ’ð~zÞ in Eqs. (22)
and (23) is a pðN � 1Þ � pðN � 1Þ matrix and can be
express as

z}|{ðp�1Þ 0s

FFT ¼

2 � � � �1 � � � � � � 0

..

.
2 � � � �1 � � � 0

�1 ..
. . .

.
� � � . .

. ..
.

..

.
�1 ..

. . .
.

� � � �1

..

. ..
. . .

. ..
. . .

. ..
.

0 0 � � � �1 � � � 2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

Since the Hessian matrix is positive definite, the follow-
ing iterative process is guaranteed to converge to the solu-
tion:

~zðkþ1Þ ¼ Pjj�jj��2 ~zðkÞ � 1

eignmax

~gðkÞ
� �

;

where ~gðkÞ ¼ r’ð~zðkÞÞ, eignmax is the largest eigenvalue of
the Hessian matrix and

Pjj�jj��2ðxÞ
� �

i
¼ xi if jxij � �2;

sgnðxiÞ�2 if jxij > �2:

�

From the analysis in [34], this algorithm has a linear conver-
gence rate as

jj~zðkÞ � ~z
$ jj2 � 1� eignmin

eignmax

� �k

jj~zð0Þ � ~z
$ jj2;

where ~z
$
denotes the optimal solution, and ~zð0Þ is the start-

ing point of this iterative process. Since F is a full rank

matrix, the Hessian matrix FFT is positive definite. Thus a
unique solution exists. This algorithm can also be acceler-
ated by the Nesterov’s method [34].

4.4 Convergence and Stopping Criterion

The gradient descent algorithm is an iterative procedure,
and thus a criterion is required to assess the convergence
of the algorithm. Following [28], we define a duality gap
for the min-max problem in Eq. (20) and derive a simple
equation for computing the duality gap in each iteration.
We use this duality gap as the stopping criterion in our
experiments, and the gradient descent algorithm returns
when the duality gap is smaller than 10�8.

Let �z be an appropriate solution computed by the gradi-
ent descent algorithm. Note that k�zk1 � �2, as it has been
projected onto the feasible region in each step. Let �w be the
corresponding solution for the primal formulation. We can
define the duality gap for Eq. (20) at ð �w; �zÞ as

dgð �w; �zÞ ¼ max
k~zk1��2

fð �w; ~zÞ �min
~w

fð ~w; �zÞ: (24)

The following results show that the duality gap in Eq. (24) is
an upper bound for the errors in both the primal and the
dual formulations. In addition, it can be computed easily by
a simple equation.

Theorem 4.2. The duality gap defined in Eq. (24) can be com-
puted as

dgð �w; �zÞ ¼ �2kr’ð�zÞk1 þ �w;r’ð�zÞh i: (25)
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In addition, we have the following results:

’ð�zÞ � ’ð~z�Þ � dgð �w; �zÞ; (26)

f�2ð �wÞ � f�2ð ~w
�Þ � dgð �w; �zÞ: (27)

The proof of this theorem is similar to that of Theorem 3 in
[28] and is thus omitted.

4.5 Regularization Parameter Interval

The regularization parameter �2 controls the temporal
smoothness overwi. That is, when �2 is larger than a certain
value �max, wt and wtþ1, for t ¼ 1; 2; . . . ; N � 1, will be
enforced to be identical. We show that such a �max can be
computed via solving a system of equations. To this end,
we need to state the optimality condition for the problems
in Eqs. (22) and (23).

It follows from the optimality condition for constrained
problems [34] that ~z�ðk~z�k1 � �2Þ is a minimizer of
Eqs. (23) or (22) if and only if

r’ð~z�Þ; ~z� ~z�h i � 0; 8 ~z : k~zk1 � �2:

This is the well-known variational inequality, and it
gives the optimality condition for constrained optimization
problems. Based on the above result, we show that �max can
be computed via solving a system of equations with a spe-
cial structure.

Theorem 4.3. Let ẑ denote the unique solution of the system

r’ð~zÞ ¼ 0;

and let

�max ¼ kẑk1:

Then for any �2 � �max, we have ~wi ¼ ~wj, 8 i; j.

The proof of this theorem is similar to that of Theorem 3.3
in [22] and is thus omitted.

The value of �max can be used to guide the selection of an
appropriate value for �2 in practice. We evaluate the effec-
tiveness of �2 in the experiments on the biological datasets.

5 RELATED WORK

Simultaneous row and column clustering for identifying
block structures from matrix data has been initially studied
in [18]. Recent surge of interests in co-clustering is moti-
vated by biological applications, which aim at identifying
subset of genes co-expressed in a subset of samples from
microarray gene expression data [9]. Co-clustering has also
been applied in many other applications, including simulta-
neous clustering of words and documents [13], [14], authors
and conference [42], etc. Early work on co-clustering focuses
on defining an error measure and then identifying blocks
that minimize this measure using heuristic search algo-
rithms [9], [18]. These early work has recently been reformu-
lated using matrix and optimization techniques [4], [11].
Following the spectral clustering formalism, it has been
shown recently that co-clustering is closely related to the
SVD of the data matrix [6]. In [13], [49], co-clustering is for-
mulated as a bipartite graph cut problem, and the data are

projected onto the left and right singular vector spaces
before they are concatenated and clustered to identify row
and column co-clusters. It is shown in [24] that sparsity-
inducing regularization can be employed to compute sparse
singular vectors, which in turn can be used to form co-clus-
ters. In [12], a framework for simultaneous co-clustering
and predictive learning is proposed.

This work is also related to recent studies on mining from
time-evolving data. Chakrabarti et al. [7] first proposed the
concept of evolutionary clustering and extended the
K-means and the hierarchical clustering algorithms for
uncovering smooth patterns from time-evolving data matri-
ces. In [10], the spectral clustering formalism is systemati-
cally extended to the evolutionary setting by incorporating a
temporal cost into the objective function, leading to a suite of
formulations for evolutionary spectral clustering. In [26], the
nonnegative matrix factorization is employed for soft clus-
tering, and a temporal cost is included for mining from time-
evolving data. Evolutionary nonnegative matrix factoriza-
tion is studied in [44], and the idea of adaptively estimating
the smoothness parameter is proposed in [48]. The broad
area of evolutionary network analysis is reviewed in [1].

The fused Lasso penalty was originally proposed in [40]
for encouraging smoothness over related coefficients in
regression problems. This type of penalty is very attractive
and has been applied for encouraging smoothness over spa-
tial and temporal smoothness in many applications, includ-
ing biological data analysis [41] and social studies. A critical
challenge in employing the fused Lasso formalism is that this
class of penalty is non-smooth and non-separable and thus is
very challenging to optimize. In [16], a modified coordinate
descent algorithm is developed to solve the fused Lasso for-
mulation. However, this algorithm is not guaranteed to give
the exact solution. In [19], a path algorithm is proposed to
solve the fused Lasso signal approximator. Instead of solving
the original primal problem, Liu et al. developed a dual for-
mulation for the fused Lasso signal approximator and
devised a gradient descent algorithm for computing the dual
solution [28]. Similar formulations and algorithms have been
studied in the compressive sensing literature [8], [20].

The problem of feature selection in clustering has been
studied in [2], [31], [45], [47], [50]. These studies mostly focus
on clustering static data matrices. In the literature, the evolu-
tionary clustering [7], [10], [26] paradigm is related, but dif-
ferent from, the currently studied evolutionary feature
selection formalism. Specifically, the smoothness constraints
are imposed on the sample dimension in evolutionary clus-
tering, while similar constraints are imposed on the feature
dimension in evolutionary feature selection. Consequently,
the clustering results are expected to evolve smoothly in evo-
lutionary clustering, while the selected features are shared
across time points in evolutionary feature selection.

6 EXPERIMENTAL EVALUATION

6.1 Experimental Setup

We evaluate the proposed evolutionary co-clustering
formulation and evolutionary feature selection formulation
using the Allen Developing Mouse Brain Atlas data [3],
[37]. This dataset contains in situ hybridization gene expres-
sion pattern images in the developing mouse brain across
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seven developmental ages E11.5, E13.5, E15.5, E18.5, P4,
P14, and P28. The 3D images are registered to a reference
atlas separately for each age, and a regular grid is applied to
partition the 3D brain space into voxels. The expression
energy within each voxel is given as a numerical value.
There is one data matrix associated with each of the seven
developing ages. The rows of the matrices correspond to
brain voxels while the columns correspond to genes. The
reference atlas ontology is organized into a hierarchy, and
we up-propagate the annotations to Level 3 and Level 5 in
the experiments. It is well-known that the developing
mouse brain is divided into grid-like patterns along the lon-
gitudinal and transversal dimensions [35], [46], and identifi-
cation of genes co-expressed in these domains might
elucidate the genetic mechanisms governing the mouse
brain development. The transversal and longitudinal
dimensions correspond to the Level 3 and Level 5 ontology,
respectively. Table 1 shows the statistics on the number of
genes, voxels and brain regions for each dataset on Level 3
and Level 5 annotations respectively.

To measure the performance of our proposed methods,
we consider the annotated brain region of each voxel as its
class and compare the clustering results with the region
labels of voxels, since it has been shown that the results of
gene expression data clustering are largely consistent with
classical neuroanatomy [5]. Following [30], the normalized
mutual information (NMI) and Rand index are used to
quantitatively measure the correspondence of the clustering
results with the classical neuroanatomy reflected in the
region annotations. We use the duality gap as the stopping
criterion for the gradient descent algorithm and the error
tolerance is set to 10�8 in the experiments. Overall, the pro-
posed formulations are efficient to solve on a regular desk-
top PC, but we do not provide detailed timing results due
to space constraints.

6.2 Co-Clustering Performance Evaluation

To evaluate the performance of the proposed evolutionary co-
clustering method, we compare the proposed method with
two other co-clustering methods; namely the one based on
sparse SVD in [24] and the spectral co-clustering method pro-
posed in [13], [49].Note that the evolutionary clusteringmeth-
ods [7], [10], [26] cannot be applied to this dataset, since the
brain voxels are not registered across ages and the data for
each age contain different number of voxels. Hence, we only
apply the fused Lasso regularization over the columns
(genes); that is, we set h ¼ 0 in Eq. (8). This is one of the unique
advantages of the proposed formulation inwhich the smooth-
ness constraint can be applied to either or both dimensions.

The performance of the three methods on the seven data-
sets is reported in Fig. 1. We observe that the best perfor-
mance is achieved when � ¼ 0:05� �max where �max is
defined in Eq. (4.3) and report the results under this param-
eter setting. Detailed studies on parameter sensitivity are
reported in the following. It can be observed from Fig. 1
that incorporation of the smoothness constraints between
contiguous age data yield improved performance.

In order to fully understand how the fused Lasso regulari-
zation parameter affects performance, we conduct a series of
experiments and report the results in the following. We first
investigate how the performance changes as the value for �
changes. To this end, we vary the value for � from
0:001 � �max to �max and report the performance on each data-
set and summarize the average performance across datasets
in Tables 2 and 4 for Level 3 datasets and Tables 3 and 5 for
Level 5 datasets, respectively. We can observe that the
performance is dependent on the choice of the parameter
value. This demonstrate that incorporation of the fused
Lasso regularization is effective in boosting the performance.

To evaluate the effectiveness of the fused Lasso regulari-
zation in encouraging smoothness over the temporal dimen-
sion, we report the ‘1-norm differences between temporally
adjacent variable vectors with different values of � in Fig. 2.
We can observe that, as � increases, the values for the fused
Lasso regularization terms decrease monotonically for Level
3 data until they reach zero, where the adjacent variables are
forced to be identical. The values for Level 5 data also
decreased to zero with the increasing of � after some fluctu-
ations when � is very small.

We also evaluate the effectiveness of the defined dual-
ity gap in determining the convergence of the gradient
descent algorithm. To this end, we plot the values of the
duality gap in the first 50 iterations of the gradient
descent algorithm under multiple � values in Fig. 3. We
can observe that the duality gap decreases monotonically
in all cases. In addition, as the value of � increases, the
duality gap approaches zero at a slower speed. This is
because more computations are required to fuse adjacent
variables when the value for � increases. In all cases, the
duality gap is reduced below the tolerance level within a
relatively small number of iterations.

6.3 Evolutionary Feature Selection in Clustering

To evaluate the proposed evolutionary feature selection for-
mulation, we compare it with two other clustering methods;
namely the K-means and the sparse K-means methods in
[47] on the Allen Developing Mouse Brain Atlas data. To
study the effect of the fused Lasso regularization parameter,

TABLE 1
Statistics about the Mouse Brain Data at Annotation Level 3 and Level 5

E11.5 E13.5 E15.5 E18.5 P4 P14 P28

Number of genes Level 3 1,724 1,724 1,724 1,724 1,724 1,724 1,724
Level 5 1,724 1,724 1,724 1,724 1,724 1,724 1,724

Number of voxels Level 3 7,122 13,194 12,148 12,045 21,845 24,180 28,023
Level 5 7,106 13,191 12,148 12,045 21,845 24,180 28,023

Number of regions Level 3 20 20 20 20 20 19 20
Level 5 82 77 76 65 64 71 74
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we conduct a series of experiments and report the perfor-
mance measured using NMI and Rand index for different �0

in Eq. (15). We select �0 to be some percentage of �max

defined in Eq. (4.3). The percentage is varied from 0.001 to 1

and the performance is reported in Tables 6 and 8 for the
Level 3 datasets, and Tables 7 and 9 for the Level 5 datasets,
respectively. We can see from these results that our pro-
posed method outperforms the other two compared

TABLE 2
Performance of the Proposed Method on the the Level 3 Allen Developing Mouse Brain

Atlas Data Measured Using NMI

Data CCSVD CCspectral 0:001 0:005 0:01 0:05 0:1 0:5 1

E11.5 0.4230 0.4619 0.4983 0.5108 0.4947 0.5282 0.4835 0.2844 0.2637
E13.5 0.4148 0.4076 0.4694 0.4438 0.4672 0.4390 0.4463 0.3701 0.3557
E15.5 0.3789 0.3412 0.4770 0.4609 0.4795 0.4742 0.4218 0.3890 0.3878
E18.5 0.2978 0.2701 0.4498 0.4394 0.4435 0.4822 0.3816 0.3665 0.3952
P4 0.3713 0.3243 0.3087 0.3345 0.3902 0.3682 0.3353 0.3812 0.4275
P14 0.3298 0.0791 0.4186 0.3904 0.3607 0.3659 0.3490 0.3422 0.4259
P28 0.3042 0.3387 0.3521 0.3487 0.3382 0.3461 0.3087 0.3204 0.4147

Avg. 0.3600 0.3175 0.4248 0.4184 0.4249 0.4291 0.3894 0.3505 0.3815

The regularization parameter is set to � ¼ percentage� �max, and the “percentage” is increased from 0.001 to 1. CCSVD denotes the
co-clustering method based on SVD proposed in [24]; CCspectral denotes the spectral co-clustering method proposed in [13].

Fig. 1. Performance of the proposed method (� ¼ 0:05� �max), denoted as CCevol, for the Level 3 data and Level 5 data in comparison with two other
methods measured using NMI and Rand index, respectively. CCSVD denotes the co-clustering method based on SVD proposed in [24]; CCspectral

denotes the spectral co-clustering method proposed in [13].

TABLE 3
Performance of the Proposed Method on the the Level 5 Allen Developing Mouse Brain

Atlas Data Measured Using NMI

Data CCSVD CCspectral 0:001 0:005 0:01 0:05 0:1 0:5 1

E11.5 0.4939 0.5296 0.5153 0.5205 0.5358 0.5265 0.4921 0.4408 0.4403
E13.5 0.4616 0.4832 0.5192 0.5063 0.4836 0.4667 0.4459 0.4487 0.4385
E15.5 0.4140 0.4147 0.4477 0.4336 0.4556 0.4563 0.4360 0.4491 0.4384
E18.5 0.3795 0.3746 0.3855 0.4023 0.4159 0.4070 0.4222 0.4302 0.4203
P4 0.3361 0.3768 0.3193 0.2800 0.3081 0.3574 0.3571 0.4203 0.4089
P14 0.3197 0.1593 0.4193 0.4006 0.3969 0.4122 0.3901 0.3974 0.3912
P28 0.3056 0.3884 0.3533 0.3304 0.3649 0.3749 0.3824 0.3792 0.3621

Avg. 0.3872 0.3895 0.4228 0.4105 0.4230 0.4287 0.4180 0.4236 0.4142

The regularization parameter is set to � ¼ percentage� �max, and the “percentage” is increased from 0.001 to 1. CCSVD denotes the
co-clustering method based on SVD proposed in [24]; CCspectral denotes the spectral co-clustering method proposed in [13].
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TABLE 4
Performance of the Proposed Method on the the Level 3 Allen Developing Mouse Brain Atlas

Data Measured Using Rand Index

Data CCSVD CCspectral 0:001 0:005 0:01 0:05 0:1 0:5 1

E11.5 0.8676 0.8529 0.8807 0.8833 0.8749 0.8634 0.8641 0.8825 0.8757
E13.5 0.8442 0.8394 0.8626 0.8648 0.8740 0.8607 0.8760 0.8446 0.8410
E15.5 0.7993 0.7787 0.8514 0.8142 0.8376 0.8212 0.8212 0.7872 0.7732
E18.5 0.7588 0.7274 0.8573 0.8371 0.8511 0.8334 0.8363 0.7777 0.7712
P4 0.6744 0.6629 0.5960 0.6708 0.6503 0.7393 0.6829 0.6889 0.7095
P14 0.6404 0.4902 0.7015 0.7078 0.6708 0.6674 0.6312 0.6854 0.7052
P28 0.6542 0.6674 0.6395 0.6449 0.6610 0.6307 0.6082 0.6112 0.6695

Avg. 0.7484 0.7170 0.7698 0.7747 0.7742 0.7737 0.7600 0.7539 0.7636

The regularization parameter is set to � ¼ percentage� �max, and the “percentage” is increased from 0.001 to 1. CCSVD denotes the
co-clustering method based on SVD proposed in [24]; CCspectral denotes the spectral co-clustering method proposed in [13].

TABLE 5
Performance of the Proposed Method on the the Level 5 Allen Developing Mouse Brain

Atlas Data Measured Using Rand Index

Data CCSVD CCspectral 0:001 0:005 0:01 0:05 0:1 0:5 1

E11.5 0.9300 0.9293 0.9377 0.9428 0.9413 0.9509 0.9475 0.9377 0.9306
E13.5 0.8981 0.8993 0.9214 0.9009 0.8992 0.8878 0.8953 0.8921 0.8965
E15.5 0.8277 0.8237 0.8246 0.7957 0.7992 0.8815 0.8883 0.8185 0.8076
E18.5 0.8008 0.7943 0.7677 0.7766 0.7704 0.7831 0.8819 0.8219 0.7880
P4 0.6987 0.6986 0.5565 0.5102 0.5518 0.7374 0.7325 0.7524 0.7367
P14 0.6563 0.6489 0.7942 0.8033 0.7929 0.7971 0.7875 0.7638 0.7534
P28 0.6682 0.6748 0.8014 0.7790 0.7816 0.8125 0.7862 0.7185 0.7217

Avg. 0.7828 0.7813 0.8005 0.7869 0.7909 0.8358 0.8456 0.8150 0.8049

The regularization parameter is set to � ¼ percentage� �max, and the “percentage” is increased from 0.001 to 1. CCSVD denotes the
co-clustering method based on SVD proposed in [24]; CCspectral denotes the spectral co-clustering method proposed in [13].

Fig. 2. The values of the fused Lasso regularization terms as � increases. The x-axis denotes the “percentage” that is used to determine the value of �
by � ¼ percentage� �max.

Fig. 3. The duality gap for the first 50 iterations under different � values. The x-axis denotes the “percentage” that is used to determine the value of �
by � ¼ percentage� �max.
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methods for multiple different regularization parameter
values. The best average performance is achieved at
�0 ¼ 0:05� �max for most cases. More importantly, the evolu-
tionary feature selection method yields a set of shared fea-
tures across developmental ages. These features correspond
to genes in our datasets. Hence, our method identifies a set
of genes that act continuously in multiple developmental
ages. These genes might play important roles in the mouse
brain development. We will analyze their functional and
developmental roles in the future.

7 CONCLUSIONS AND DISCUSSIONS

In this paper, we propose evolutionary co-clustering and
feature selection formulations for mining time-evolving
data. The proposed formulations employ the fused Lasso
type of regularization to encourage smoothness across time

points. The resulting optimization problem is non-convex,
non-smooth, and non-separable, and we employ an iterative
procedure to compute the solution. Each step of the iterative
procedure involves a convex problem. We derive the dual
form of this problem and employ a gradient descent algo-
rithm to compute the dual optimal solution. Experimental
results on the Allen Developing Mouse Brain Atlas data
show that the proposed methods yield consistently higher
performance in comparison to other methods.

In this paper,we solve the dual formof the convex problem
in each iteration. In the literature, coordinate descent and path
algorithms have been developed to solve the fused Lasso sig-
nal approximator.Wewill explore and compare other alterna-
tive methods for solving this problem. This paper focuses on
evaluating the proposed method on the mouse brain gene
expressiondata, but thismethod can be applied tomany other
domains. We plan to apply our method to other datasets in

TABLE 6
Performance of the Proposed Method on the the Allen Developing Mouse Brain Atlas Level 3

Datasets Measured Using NMI

Data K-means SK-means 0:001 0:005 0:01 0:05 0:1 0:5 1

E11.5 0.4757 0.4551 0.4609 0.4565 0.4906 0.4775 0.4713 0.4923 0.4852
E13.5 0.3491 0.3825 0.3841 0.4158 0.3827 0.3887 0.3746 0.3865 0.3935
E15.5 0.3592 0.3523 0.3847 0.3504 0.3720 0.3499 0.3354 0.3523 0.3779
E18.5 0.3645 0.3797 0.3490 0.3759 0.3333 0.3425 0.3436 0.3465 0.3252
P4 0.3727 0.3444 0.3983 0.3961 0.3756 0.3715 0.3866 0.3520 0.3784
P14 0.3560 0.3890 0.3221 0.4097 0.3554 0.3863 0.3536 0.3613 0.3694
P28 0.3869 0.3499 0.3560 0.3577 0.3503 0.3698 0.3484 0.3267 0.3040

Avg. 0.3806 0.3790 0.3793 0.3946 0.3800 0.3837 0.3733 0.3740 0.3762

The “percentage” is increased from 0.001 to 1, and �0 ¼ percentage� �max. SK-means denotes the sparseK-means method.

TABLE 7
Performance of the Proposed Method on the the Allen Developing Mouse Brain Atlas Level 5

Datasets Measured Using NMI

Data K-means SK-means 0:001 0:005 0:01 0:05 0:1 0:5 1

E11.5 0.5660 0.5802 0.5779 0.5696 0.5805 0.5803 0.5749 0.5659 0.5717
E13.5 0.5341 0.5266 0.5238 0.5458 0.5363 0.5510 0.5307 0.5271 0.5314
E15.5 0.4844 0.5019 0.4900 0.4871 0.5084 0.5242 0.5052 0.5046 0.4984
E18.5 0.4743 0.4751 0.4675 0.4598 0.4742 0.4909 0.4659 0.4538 0.4476
P4 0.4143 0.4311 0.4176 0.4275 0.4185 0.4388 0.4430 0.4250 0.4325
P14 0.3913 0.4028 0.3968 0.4066 0.4075 0.4184 0.4040 0.4018 0.4016
P28 0.3924 0.3886 0.3966 0.3955 0.4009 0.3921 0.3962 0.4067 0.3986

Avg. 0.4652 0.4723 0.4672 0.4703 0.4752 0.4851 0.4743 0.4693 0.4688

The “percentage” is increased from 0.001 to 1, and �0 ¼ percentage� �max. SK-means denotes the sparseK-means method.

TABLE 8
Performance of the Proposed Method on the the Allen Developing Mouse Brain Atlas Level 3

Datasets Measured Using Rand Index

Data K-means SK-means 0:001 0:005 0:01 0:05 0:1 0:5 1

E11.5 0.8153 0.8339 0.8371 0.8359 0.8490 0.8615 0.8621 0.8638 0.8429
E13.5 0.8239 0.8034 0.8267 0.8070 0.8201 0.8179 0.8077 0.8135 0.8205
E15.5 0.7767 0.7925 0.7897 0.7683 0.7921 0.7880 0.7834 0.7997 0.7862
E18.5 0.7499 0.7621 0.7738 0.7576 0.7568 0.7685 0.7623 0.7534 0.7527
P4 0.6727 0.6806 0.6687 0.6783 0.6662 0.6768 0.6621 0.6730 0.6760
P14 0.6480 0.6244 0.6501 0.6220 0.6208 0.6264 0.6283 0.6346 0.6345
P28 0.6627 0.6559 0.6390 0.6602 0.6429 0.6493 0.6611 0.6526 0.6470

Avg. 0.7356 0.7361 0.7405 0.7328 0.7354 0.7415 0.7381 0.7415 0.7371

The “percentage” is increased from 0.001 to 1, and �0 ¼ percentage� �max. SK-means denotes the sparseK-means method.
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the future. The selection of the fused Lasso regularization
parameter is an important but challenging task. It has been
shown that the stability selection is a promising way to tune
the regularization parameters [32]. We plan to apply stability
selection to tune the parameters in the future. Our current
work does not consider tuning the smoothness parameter
adaptively in order to incorporate different levels of smooth-
ness at different time points [48]. We plan to extend our for-
mulations to such scenarios in the future.
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